If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3948x^2+52x-8.6268=0
a = 3948; b = 52; c = -8.6268;
Δ = b2-4ac
Δ = 522-4·3948·(-8.6268)
Δ = 138938.4256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-\sqrt{138938.4256}}{2*3948}=\frac{-52-\sqrt{138938.4256}}{7896} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+\sqrt{138938.4256}}{2*3948}=\frac{-52+\sqrt{138938.4256}}{7896} $
| 3c=c+48= | | 4(x*3)=20 | | 1-2x+x^2=0.05 | | 15u=7u+56 | | x^2-x+0.1659=0 | | x^2-x+1659=0 | | x+49=9x | | -4(6x-1)=3x-9 | | 1.15=(1+x)^5 | | -5(4-(-3)(2))=x | | 2a+4=-3a+11 | | 1,785=17(x+25) | | 32x+13=180 | | 350+x=17 | | w/10.24=8/ | | 8x^2+15x-33=175 | | 6(4+2)+2(x+4)=4x | | Y=0.25x+6.00 | | 68=4v-12 | | 5x+-7=x+2 | | 9-2x=17-4x | | 5n-14=n | | 3x+106=360 | | 480t=660(t–1/12) | | -8-8-n=-3(2n-4) | | 7-(15t-13)=-25 | | 15t-10=-3t+8 | | 9-2x=7-4x | | 3p-5=6p+7 | | 6|3n-1|=78 | | |-x-9|=-13 | | 6x+72=82 |